
How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 1 of 13

A Stewart-Priven Group White Paper

The objectives of this white paper are to:

• examine why software inspections are not used more widely,
• identify the issues contributing to their lack of use, and
• recommend what can be done to address and solve these issues.

The proven benefits of inspections are too significant to let them fall by the wayside!

For the purpose of this paper, an inspection is defined as a pre-emptive peer review of
work products - by trained individuals using a well defined process - to detect and
eliminate defects as early as possible in the Software Development Life Cycle (SDLC) or
closest to the points of defect injection.

I. Background
According to the National Institute of Standards and Technology (NIST) study [1] - “The
Economic Impacts of Inadequate Infrastructure for Software Testing” - the problem of
continued delivery of bug-ridden software is costing the U.S. economy an estimated
$59.5 billion each year. Some examples of high impact software failures are:

• during the first Gulf War, an American Patriot Missile battery in Dharan, Saudi
Arabia, failed to track and intercept an incoming Iraqi Scud missile. The Scud struck
an American Army barracks, killing 28 soldiers and injuring about 100 others.

• the misdirection of the NASA Mars climate orbiter
• the shutdown of the air-traffic control system in the LA airport
• the Northeast blackout
• the long delay in the completion of the Denver airport baggage-handling system

The study also found that: “although all errors cannot be removed, more than a third of
these costs, or an estimated $22.2 billion, could be eliminated by an improved testing
infrastructure [reviews, inspections, etc.] that enables earlier and more effective
identification and removal of software defects. These are the savings associated with
finding an increased percentage (but not 100%) of errors closer to the development stages
in which they were introduced. Currently, over half of all errors are not found until
'downstream' in the development process [testing] or during post-sales software use."

Figure 1 shows a typical relationship between the cost of repairing a defect in a given
phase of the development cycle versus which phase the defect was introduced. This
relationship gives rise to the development costs described in the NIST report.

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 2 of 13

Figure 1 – Cost of fixing a defect [2]

What is the evidence that inspections address the cost and quality issues described
above but are not widely used correctly to maximize defect detection and removal?

• ‘The data in support of the quality, cost and schedule impact of inspections is
overwhelming. They are an indispensable part of engineering high-quality software.’
Steve McConnell - “IEEE Software Jan/Feb 2000, Best Influences on Software
Engineering over past 50 years”

• ‘Inspections are surely a key topic, and with the right instrumentation and training

they are one of the most powerful techniques for defect detection. They are both
effective and efficient, especially for up-front activities. In addition to large-scale
applications, we are applying them to smaller applications and incremental
development.’ Chris Ebert - “IEEE Software Jan/Feb 2000, Best Influences on
Software Engineering over past 50 years”

• ‘Inspection repeatedly has been demonstrated to yield up to a 10 to 1 return on
investment. . . . depressingly few practitioners know about the 30 year old
technique of software inspection. Even fewer routinely perform effective inspections
or other types of peer reviews.’ Karl Wiegers - “The More Things Change, Better
Software, Oct. 2006”

368

64

37

7
3

130

26
13

3 1

50

10
5

1
10

2
15

1
1

0

50

100

150

200

250

300

350

400

'1 ' Identifies Phase Defect In troduced

Phase

Repaired

Rela tive Cost of Softw are Fault Propagation

Requirements

Design

Code
Unit Test

System Test
Customer

Design Code Unit Test
System

Test

Reqts

Defects inserted (‘1’ on the graph), and not discovered and fixed at their point of insertion, are much costlier to fix later
in the Software Development Life Cycle. For example, in the graph:

Defects inserted during Requirement specification could be 5 times more costly to fix during Design, or 10 times more
costly to fix during Coding. Defects inserted during Design could be 26 times most costly to fix during System Test.

Relative
Cost to
Repair

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 3 of 13

• 'Formal inspections can raise the [defect] removal efficiency to over 95%. But part

of the problem here is that not a lot of companies know how to use these things.'
Capers Jones, Chief Scientist, SPR – "Computer Aid Inc. July 2005"

• ‘The software community has used Inspections for almost twenty eight years.

During this timeframe Inspections have consistently added value for many software
organizations. Yet for others, Inspections never succeeded as well as expected,
primarily because these organizations did not learn how to make Inspections both
effective and low cost.’ Ron Radice - “High Quality Low Cost Software Inspections,”
2002 Paradoxicon Publishing

• ‘I continue to be amazed at the number of software development organizations that

do not use this powerful method [inspections] to improve quality and productivity.’
Ed Weller - “Jan. 2002, Calculating the Economics of Inspections”

The evidence is clear – Inspections are the most effective way to improve the
quality, schedule and cost of developing software – but after all the years after their
introduction, why are they not an integral part of all software development life
cycles?

The authors, Roger Stewart and Lew Priven each spent over 20 years developing projects
that used inspections and for the past 8 years each has trained a wide variety of
companies in the use of Fagan inspections. They consistently observed that soon after
inspection training completes, “malicious compliance” sets in - for example: critical
inspection execution deviations are introduced and/or ineffective 'shortcuts' are employed.
This results in inspection benefits being compromised, leads to limited use or
discontinuation, and allows too many defects to escape into test and customer use.

II. Back to basics
In order to deal with the problem of inspections not being widely used (or used correctly for
the maximum benefit), we need to go back and look at the original approach. Inspections
were an outgrowth of the quality message from gurus W. Edwards Demming and J.M.
Juran to design in quality at the beginning of the development process, instead of “testing
in” pseudo-quality at the end of the production line.

What naturally followed was the idea of applying quality control techniques to the software
development life-cycle as if it were a production line. For example: sample the product
periodically (detect defects), make adjustments as defects are found (fix defects and
improve the development process), and predict the shipped product quality based on the
results of the sampling

Application of the quality control techniques described above to the software development
cycle, led to the development of the software inspection process. The most widely known

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 4 of 13

and practiced inspection process was introduced to the IBM software community in 1972
by a team led by Michael Fagan and managed by Lew Priven [3], co-author of this paper.

In the case of software, the development life-cycle is the production line and inspections
are the sampling and prediction technique. Inspections are the vehicle to sample the
product in the earlier phases of the development life cycle to detect and fix defects closest
to the point of injection and the data collected from inspections can be used as the basis
for predicting the quality of the delivered product.

III. How have inspections evolved?
In 1972, Lew Priven published an IBM Technical Report which described a software
development management system including “points of management control” using process
monitors that evolved into inspections. The management system was based on a well
defined development process – which satisfied the need for a “production line” as
described above. With the “production line” in place, Priven hired Michael Fagan, a quality
engineer with a hardware and manufacturing background, to work with the development
team to find a way to improve the quality of delivered software [3][4][5][6]. The IBM
(Fagan) Inspection Process then evolved as a critical component of the end-to-end
software development life cycle. Over the years, that integration with the software
development life cycle has been lost as the focus on the inspection process turned to
execution details and inspections came to be viewed as a stand alone quality
process. However, the supporting infrastructure of a software development life cycle is
critical to successfully implementing inspections.

IV. Why is the supporting development infrastructure important?
The supporting infrastructure of a well defined development process is important because
it requires management at all levels, and during all development phases, be actively
supportive of the inspection process. A life-cycle view is needed because the cost and
schedule impact are primarily borne by the design and implementation components of the
organization, while the resulting benefits of reduced cost, higher quality and improved
schedule primarily accrue to testing, customer use and the overall project.

V. Theory good, but why aren’t inspections embraced?
In addition to being viewed as a stand alone process, which lacks a life-cycle view of
investment and associated savings, inspections have also been characterized by a
number of myths. These myths discourage implementation. While there is a kernel of truth
in each myth, each can be turned into a positive. Some examples are:

• inspections are time consuming;
yes, they add up-front development time (e.g., requirements, design) but the
payoff in improved project cost and quality can be quantified and the benefits
shown. The problem is that time for inspections are added to the up-front

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 5 of 13

development phase schedules and the benefits, which accrue to the project, are
not visible to these groups. Rather than being viewed as a problem, the additional
up-front requirements, design or code time for inspections should be viewed as an
investment in obtaining the quality, cost and schedule benefits for the project.

• inspections are bureaucratic and one size fits all;
System Engineers and Software Engineers, with support from management, need
to have the flexibility to adjust their inspection process to the needs of the product
under development. For example, the difference between inspecting software to
control a jet fighter (where a defect could be a matter of life and death) and
software that displays a web form (where the impact of a defect may be an
inconvenience). The former may require a broader comprehensive set of
inspections while the latter could employ other visual analysis techniques to
supplement a base set of inspections.

• all work products must be inspected;
There is a lack of guidance on when, where and how to start an inspection
process in an on-going project. An approach to prioritizing what work products to
inspect needs to be intelligently applied by management.

While these are myths that we typically hear about inspections, upon further examination
they are symptoms of a much larger underlying set of issues. The remainder of the paper
will focus on dealing with those ‘issues’ which we will later refer to as ‘Inspection Pitfalls’.

VI. A realistic approach …
A realistic approach to inspections is to formulate a set of ‘selection criteria’ to guide the
identification of those areas of the product most critical to success, or where problems are
most likely to occur, and inspect those areas. This addresses the common complaint that
there is not enough time to integrate inspections into tight schedules yet allows for using
inspections for finding defects where they are most likely to cause problems.

Figure 2 addresses this no-time issue by showing the prioritization of “what to inspect”
related to the development cycle phases of the project. There should be a strong focus on
requirements and design which are the most costly to fix when discovered later in the
development cycle (see Figure 1). The focus on requirements and design is particularly
important because our experience has shown that the largest numbers of defects are
injected during these two phases of development. One example from a TRW study shows
about 52% of defects are injected in requirements and 28% are injected in design. [7]

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 6 of 13

SSTC June 2007 Stewart-Priven Group 32

Copyright © 2007 Stewart-Priven Group, All Rights Reserved
SPG

Prioritizing What to Inspect

ALL
Reqts

Quality-Critical Areas;
(examples)

• Security
• Error handling
• Algorithms
• Interfaces (ex: user)

and Complex Areas

Defect-Prone Areas

Defect Fixes

Remaining Areas,
if economic payoff

Requirement
Phase

ALL
Design

If Inspections introduced after design or code

starts, then only inspect from that point forward

S
e
le

c
ti
o
n
 C

ri
te

ri
a

D e v e l o p m e n t Maintenance
Design
Phase

Code / Implementation
Phase

Testing
Phases

Customer
Use

Feature Enhancements

Figure 2 – Prioritizing what to inspect

The most successful implementations of inspections have been in organizations that have
multi-level active management inspection support and a well defined development life
cycle with pre-existing emphasis on planning, monitoring, and measurements use.

VII. Development Infrastructure to support inspections
There is a lot of guidance on the structure of inspections such as IEEE standard 1028, and
how to conduct an inspection, but little guidance on:

• how to select what to inspect (see Figure 2),
• how to develop an appropriate software development life cycle infrastructure that

provides the necessary framework for successful implementation of inspections, or
• how to determine what computerized tools are needed to ensure proper inspection

execution and management visibility into results, project savings and Return On
Investment (ROI). See section VIII.

For example, data collection is too often left to the discretion of the inspection
teams and therefore data needed to evaluate the effectiveness, savings, etc. of
inspections is not available to management.

Successful inspection implementation requires a software development life cycle
that demands planning, data collection, reporting, monitoring, and tracking.
Introducing inspections into a project culture that does not believe in and have a
development infrastructure that actively supports these activities is fraught with
risk.

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 7 of 13

Developing an appropriate infrastructure begins with selecting a framework upon which to
build your development life cycle. A widely accepted framework is the Capability Maturity

Model® (CMM ®), and its’ successor CMM-Integration (CMMI®). However, as Watts
Humphrey points out [8], “Although the CMM® provides a powerful improvement
framework, its’ focus is necessarily on ‘what’ organizations should do – not ‘how’ they
should do it.”

There are 4 key steps to filling out the development framework:

1. Select a development model (e.g. iterative, incremental, waterfall, spiral, agile)
2. Clearly define the development life cycle by identifying and recording for each

process within the life-cycle, its' required inputs, the input's entrance criteria, the
“what and how” of the process, the expected outputs, and the output's exit criteria.

3. Get process agreement by all components of the development organization (e.g.,
requirements generators, designers, coding/implementers, testers, etc.)

4. Determine which project tools will be used for planning, data collection, reporting,
monitoring, and tracking. (tool examples are critical path, earned value, etc.)

When these steps are completed, then the introduction of inspections has the necessary
framework (i.e., development infrastructure) for ongoing success, and for inspections to be
accepted as a very integral part of the end-to-end development life-cycle.

VIII. How the Stewart-Priven Group’s (SPG) ‘Inspection Methodology’ reinvigorates
inspections
Inspections will only be successful long term if they are integral to a well defined
development process that has active management support in each phase of development.
SPG's methodology starts with an assessment, to ensure an adequate development life-
cycle infrastructure is in place, prior to inspection training. Steps 1 and 2 in figure 3 show
the SPG Life Cycle Assessment Methodology.

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 8 of 13

SSTC June 2007 Stewart-Priven Group 84

Copyright © 2007 Stewart-Priven Group, All Rights Reserved
SPG

1. Review &
Assessment of
Development
Infrastructure 2. Tuning

Recommendation;
& any Prerequisite
Infrastructure
Implementation 3. SPG Inspection

Methodology:

Tools & Training 4. Performance,
Consulting
and CoachingSTEPS:

1. Performed prior to Inspection Methodology introduction
2. Identify significant enhancements and any prerequisite implementation
3. Inspection Methodology applied
4. Consulting and coaching Inspection implementation and tuning enhancement incorporation

SPG Assessment Methodology

Development Infrastructure

Tools & Training

Implementation

StewartStewart--PrivenPriven
MethodologyMethodology

S
te
w
a
rt

Group

P
riv
e
n

SPGS
te
w
a
rt

Group

P
riv
e
n

SPG

Stewart-Priven Methodology

Figure 3 – SPG Assessment Methodology

Once the development infrastructure is in place, what else needs to be done? Based on
our experience in training over 5,000 inspectors in many companies at over 50 locations,
evaluating the data collected, and observing the ongoing implementation or lack thereof;
we have identified 10 inspection pitfalls, each of which inhibits inspection implementation.

The 10 inspection pitfalls and associated risks are shown in Table 1. Note: the lack of a
well defined SDLC infrastructure, discussed earlier, is the first pitfall.

PITFALL RISKS

1 Lack of Supportive
SDLC Infrastructure

• Immature practices for planning, data
collection, reporting, monitoring & tracking

• Leads to Pitfalls #4, 6, 10
2 Poor Management

Understanding of the
Inspection Process, its’
benefits, and their
responsibilities.

• Leads to Pitfalls #4, 6, 8, 9

3 No Computerized
Management Planning
Tools

• Inadequate schedule time (Pitfall #4)
• No savings appreciation, leads to no

inspections or too few inspections

4 Too Little Schedule Time
for Inspections

• Defects escape to more costly phases to fix
• Inspections not correctly executed
• Leads to Malicious Compliance

5 No Computerized • Inconsistency, compromising shortcuts

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 9 of 13

Inspector Tools • Defects escape to more costly phases to fix
6 Inadequate Monitoring of

Inspection Execution
and Results

• Inspection process execution deteriorates
• Defects escape to more costly phases to fix
• Employees lose interest when savings

summaries not periodically shared
7 No Post-Class

Practitioner Refresher

• Process misunderstood, compromising
shortcuts introduced, defects escape

8 No Inspection Facilitator
/ Project Champion

• Inspection process issues not addressed or
coordinated

• Inconsistent or incorrect inspection
execution

• Little useful feedback to management
9 Slow Inspection

Implementation by
Project Teams

• Ineffective start or no start occurs
• Inspection training forgotten; Incorrect

execution

10 No Inspection Process
Capture

• Process misunderstood, inconsistent
execution, defects escape

• No repository for project lessons-learned

Table 1 – Risks associated with inspection pitfalls

Table 1 identifies how each inspection pitfall leads to findable defects not being discovered
with inspections, resulting in:

A. Development cost savings not fully realized
B. Quality improvements not fully achieved
C. Maintenance and Support savings not realized
D. Inspections could become a total cost, not a savings

SPG distinguishes between the development life-cycle infrastructure - within which
inspections fit (see section VII), and the inspection infrastructure – which enables proper
inspection execution. An enabling inspection infrastructure must address all ten pitfalls and
would consist of:

1. Computerized tools for management use in planning inspections and predicting the
overall project costs and savings from applying inspections: (see APPENDIX I for
an inspection tool overview)

2. Computerized tools to aid inspectors in correctly and consistently performing
inspections, gathering inspection related data, and identifying how future
inspections can be improved

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 10 of 13

3. Monitoring and Analysis computerized tools for management post-inspection
evaluation of individual inspections

4. Computerized management tools for analyzing inspection ROI and an aggregate
calculator for assessing the actual project savings from multiple inspections

5. An inspection process that allows for options based on the project’s target
environment and on team knowledge.

6. Ability to customize your training material, incorporating your terminology, and is
based on your needs

7. Rapid training of project personnel by a two-day comprehensive training course with
significant focus on requirements and design documentation

8. An overview briefing for upper management along with a more rigorous
management performance course so upper managers and project leaders can fully
understand the inspection process, its’ benefits and their responsibilities.

9. Follow-up practitioner refreshers to deal with any implementation problems –
focused on making your implementation successful both initially and long-term.

10. An inspection process capture tool to enable inspections to become an integral part
of a company’s SDLC infrastructure

Table 2 shows how SPG’s Inspection Methodology solves the 10 inspection pitfalls

PITFALL SOLUTION

1 Supportive SDLC Infrastructure

• Assessment Methodology
– step 1 assess client SDLC
– step 2 recommends any

changes
2 Management Understanding

• Student Feedback from Insp. Class
• Upper Management Overview
• Management Performance Class

3 Management Planning & Savings
Tools

• Planning-Counter Tool
• Savings/Cost Estimator Tool

4 Scheduled Time for Inspections

• Inspection Planning-Counter Tool
• Management Performance Class

5 Inspector Tools

• Preparation Tool
• Inspection Meeting Tool
• Analysis Tool, Effectiveness Tool

6 Monitoring & Assessment Tools

• ROI Calculators for Text and Code
• Analysis Tool, Effectiveness Tool
• Aggregate Results Tool

7 Student Refresher

• Seminar for Previous Students
• Inspection Reference Card

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 11 of 13

• Inspection Product Checklist Kit
8 Inspection Facilitator / Champion

• Upper Management Overview
• Management Performance Class

9 Rapid Project Implementation

• 2-Day Inspector Training Class
• Multiple Classes /Week (100+

students)
10 Company Inspection Process Capture

• Course Material Tailoring
• Inspection Process Capture Tool

Table 2 – SPG’s Inspection Methodology solves the pitfalls

IX. The Roadmap to Success
The pitfall solution roadmap shown in Figure 4 shows the solution relationships that
provide for successful software inspection implementation that will endure over the long
term. The pitfall solutions provide the inspection infrastructure that together with a
comprehensive inspector training program form an Inspection Methodology for achieving a
lasting and successful inspection program.

Figure 4 – Inspection Infrastructure

All Inspection Pitfalls Must be Solved

Roadmap to Successful Inspection Implementation

7
Training
Refresher

4
Time for

Inspections
in Schedule

5
Inspector
Tools

2
Management
Understanding

3
Management
Planning Tools

10
Inspection Process

Capture Tool

6
Execution

Monitoring Tools

9
Rapid Project

Training

8
Inspection
Champion

S
u

c
c
e

s
s
fu

l
in

s
p

e
c
tio

n
 im

p
le

m
e

n
ta

ti
o
n

Inspection Methodology
Includes Practitioner Training

AND

Pitfall Prevention

1
SDLC

Infrastructure

All Inspection Pitfalls Must be SolvedAll Inspection Pitfalls Must be Solved

Roadmap to Successful Inspection Implementation

7
Training
Refresher

4
Time for

Inspections
in Schedule

4
Time for

Inspections
in Schedule

5
Inspector
Tools

2
Management
Understanding

2
Management
Understanding

3
Management
Planning Tools

10
Inspection Process

Capture Tool

6
Execution

Monitoring Tools

6
Execution

Monitoring Tools

9
Rapid Project

Training

8
Inspection
Champion

S
u

c
c
e

s
s
fu

l
in

s
p

e
c
tio

n
 im

p
le

m
e

n
ta

ti
o
n

Inspection Methodology
Includes Practitioner Training

AND

Pitfall Prevention

1
SDLC

Infrastructure

1
SDLC

Infrastructure

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 12 of 13

X. Summary

Our experience has shown us that inspections can live up to their potential and be
embraced by the development community if:

• they are integral to a well defined software development life cycle infrastructure
supported by management

• they are flexible in determining what to inspect
• computerized tools are available to guide the inspection teams
• computerized tools are available to assist management in planning and evaluating

inspections
• management monitors inspection execution and tracks results
• project personnel are provided with the proper training and follow-up support.

APPENDIX I

Copyright 2007 Stewart-Priven Group, All Rights Reserved

32 12-08-06

SPG

Moderator
with team ManagersTeam

Leaders

Tool Use Legend
Tool
link

Stewart-Priven Computerized Inspection Tools

Inspection
Counter

3F

Product/Project
Inspection
Planning Tools

Inspection Execution
& Reporting Tools

Inspection Monitoring
Tools for Management

Savings
Estimator

3G

Preparation
Worksheet

3A

Inspection Mtg.
Defect Log

3B

Data Analysis
Worksheet

3C

Effectiveness
Worksheet

3D

ROI
Calculators

3E
- Requirements

- Design
- Code

Data Analysis
Worksheet

3C

Effectiveness
Worksheet

3D

Inspector
Support

- Tri-Fold Reference Card

- Product Checklist Kit

- Process Template Tool - 3H Aggregate
Inspection Results

Calculator

3I

Figure 5 – SPG Computerized Inspection Tools

References

[1] NIST Planning Report 02-3 The Economic Impacts of Inadequate Infrastructure for Software Testing May
2002

[2] Bennett, Ted L. and Paul W. Wennberg. “Eliminating Embedded Software Defects Prior to Integration
Test.” Sidebar page 16 “Economics of Fault Finding.” CROSSTALK Dec. 2005

http://www.stewart-priven.com/

How to Avoid Software Inspection Failure and Achieve Ongoing
Quality, Cost, & Schedule Benefits

5/03/2007 SSTC ©Stewart-Priven Group, LLC 2007 13 of 13

[3] Radice, Ron. High Quality Low Cost Software Inspections. Andover, MA: Paradoxicon Publishing, 2002

[4] Priven, L.D. “Managing the Programming Development Cycle.” IBM Technical Report 21.463 March 1972

[5] Fagan, Michael E. “Design and Code Inspections and Process Control in the Development of Programs.”
IBM Technical Report 21.572 December 1974

[6] Priven, L. and F. Tsui. “Implementation of Quality Control in Software Development.” AFIPS Conference
Proceedings, 1976 National Computer Conference 45, (1976):443-449

[7] McGraw, Gary. Making Essential Software Work. Cigital, Inc. March 2003 <http://citigal.com/whitepapers>

[8] Humphrey, Watts. “Three Dimensions of Process Maturity” CROSSTALK Feb. 1998

About the Authors
Roger Stewart is co-founder and Managing Director of the Stewart-Priven Group. He is an experienced
Lead Systems Engineer and Program Manager in government and commercial system development –
including Systems Engineering, Software Development, System Integration, System Testing, and Process
Improvement.

Previously, Stewart taught the Fagan Defect-Free Process for Michael Fagan Associates (8 years) after
spending 30 years with IBM’s Federal Systems Division, (now part of Lockheed-Martin) managing and
developing systems for Air Traffic Control, Satellite Command & Control, On-Board Space Shuttle, Light
Airborne MultiPurpose System (LAMPS Helicopter); and in Commercial Banking, Telecommunication and
Networking systems.
Roger has a BS in Mathematics from Cortland University.

Lew Priven is co-founder and Managing Director of the Stewart-Priven Group. He is an experienced
executive with management and technical background in system and software development, software quality
training, management development training and human resource management.

Previously, Priven managed the IBM team that developed the inspection process, taught the Fagan Defect-
Free Process for Michael Fagan Associates (8 years), and was Vice-President of Engineering & Application
Development at General Electric Information Services, Vice President of Application Development for IBM’s
Application Systems Division, Director of Operations & Development for the IBM Information Network, Vice
President of Information Technology & Human Resources for Satellite Business Systems.
Lew has a BS in Electrical Engineering from Tufts University and an MS in Management from Rensselaer
Polytechnic Institute.

The Stewart-Priven Group can be contacted at:
7962 Old Georgetown Road, Suite B, Bethesda MD 20814
Office: 865-458-6685
Fax: 865-458-9139 Fax
Web: www.stewart-priven.com
Email: spgroup@charter.net

http://www.stewart-priven.com/

