
DACS Survey on the State of the

Practice of Development Tools to

Support Embedded Software

Development

Tom McGibbon, CSDP

DACS Director

tom.mcgibbon@itt.com

315.334.4933

Survey Objectives

• Increased complexity within net-centric and SoS
embedded software

• New tools are being utilized

• Many believe tools are not adequate

• Survey
– State of tools for embedded software engineering

– Identify benefits received from tools utilized

– Identify shortcomings and gaps

• Taxonomy developed based on tool chains to
aid in survey development

Survey Demographics
• Internet based survey
• 44 responses

– 36 respondents directly solicited

– 8 respondents responded to DACS user-wide solicitation

– Engineers Developing Embedded Components of:
• F-22,

• Global Hawk,

• JSF,

• F16 RWR,

• ECM,

• Satellite Software,

• Boeing 767,

• GTTA HDC,

• Radar

– Types of Software
• Control

• Real Time

• Diagnostic

• Flight Software

23

3

1

7

5

1 1 1
Aerospace / Aeronautical

Automotive / Transportation

Communications /

Networking

Defense

Government

Energy / Utilities

other

Education

Embedded Systems

• Biggest Challenges in Designing:

29 out of 44 Respondents answered this question.

This open ended question received a variety of responses from survey participants. In order to
uncover any trend among the responses each response was categorized in the following
categories below.

Response Category Number

Change in Scope/Requirements Creep/Poor Requirements

Problems discovered in Testing/Integration

Poor Estimatation/Scheduling/Aggressive Schedule

Not enough staff/resources

Hardware Changes/Issues/Bugs

Fuding Changes/Unrealistic Budget

Dependent systems/software not ready

Conflicting Program Priorities
Unique Challenges not faced before/Unforseen technical
Challenges

Lack of Stable Infrastructure/Middelware

Lack of Planning/Poor Management

Performance Issues

13
5
5
3
3
3
2
2
2
1
1
1
1
1

Embedded Systems

• Design Approaches

32 out of 44 Respondents answered this question.

The following is a rank order list of software design methodologies from most to least frequently
selected.

Object Oriented Design 24
Model Based Development 20
Rapid Prototyping 20
Simulation and Modeling 21
Automatic Code Generation 14
ADARTS/CODARTS 9
Design Verification and Validation 8
Agile 7
Coverification 5
Other 3
JSD (Jackson System Development) 1
Product Engineering 1

20 out of 44 Respondents answered this question.

The following is a list of the most notable drawbacks identified.

- Both Object Oriented with C++ and automatic code generation produce significantly more code.

- Tools all force users to follow their process and methodologies even if they don't make sense
from a business perspective.

- OO design has been somewhat problematic. It is not always applied properly to our systems
(which have severe real-time constraints & memory limitations). It is difficult to gain visibility into
the execution of the OOD components & also difficult to prove that the code has actually
been tested (code coverage).

- Tools are costly and difficult to learn and use. Buggy. Don't support my processor of choice.

- Automatic code generation works for GUI's, but not ready for prime-time for anything real-time
or large.

- The tool needed for effective MBD are very expensive. In addition, DO-178B does not yet fully
address the use of MBD methods

Embedded Systems

• Software Design & Modeling Tools:

29 out of 44 Respondents answered this question.

9

9

2

2

1

1

1

1

1
1 1

Telelogix

None

Matlab

Codw arrior

Artisian Studio

Other

Eclipse

In-house tools

CCS C Compiler

Microsoft Visio

Rational

12 out of 44 Respondents answered this question.

The following is a partial list of lacking capabilities.

- Having the ability to import/export models from other tools (or have a COMMON file format
among the tools). Ease of set up for different environments and the ability to easily switch
between them. More/better on line tutorials.

- Customizability. Higher modeling languages. More robustness in simulation. More advanced
analysis techniques. More support for co-simulation.

- Reverse code generation, also known as round-trip engineering. We need to be able to build a
model, have code generated from the model, change the code and have the midel updated
automatically.

- Tools should be as simple to use as pencil and paper.

- Perfect code import / reverse-engineering, better predictive heuristics to reduce the amount of
design data that must be entered before generating code.

Other Questions

27 out of 44 Respondents answered this question.

18

17

10

10

8

5

4
2 1 11

C

C++

Assembly

Ada

Java

Visual Basic

C#

HDL/VHDL

TinyOS

VB.NET

Fotran

Other Languages mentioned:

- Tiny OS

• Why projects late/cancelled?

• Biggest Challenges Faced…

• Drawbacks from use of design methodologies

• Have you developed any in-house tools? Why?

• Missing capabilities/problems from
– RM tools

– CM tools

– Formal Analysis Tools

– Testing Tools

– Programming Languages

– IDEs

– RTOSs

• Unique Challenges with
– Systems of Systems

– Net Centric Systems

• What challenges do you see on the horizon for your embedded system
projects?

Conclusions (Partial)

Further Information

• Download the Document from the DACS
Website:

http://www.thedacs.com

• Contact Information

Tom McGibbon

tom.mcgibbon@itt.com

315.334.4933

